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Inverted Pendulum Car 

1 Modeling 

1.1 Built-in amp 

The power amp in the vehicle allows for the small current output from the op-amps to 

drive the motor at a certain gain. Therefore, its transfer function is: 

𝐺𝑎𝑚𝑝 = 𝐾𝑎  

1.2 Motor 

The motor is a simple component that we have worked with all term. It has one pole at 

1/T and a gain factor Km. Therefore, its transfer function is: 

𝐺𝑚 =
𝐾𝑚

𝑇𝑠 + 1
  

1.3 Gear Ratio 

The vehicle uses a gear ratio to compensate for the low torque of the electric motor.  

When looking at angular momentum it can be treated as a gain related to the ratio of the radii 

of the input (R1) and output (R2) shafts. The transfer function is as follows: 

GR(s) =
𝑅1

𝑅2
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1.4 Angular velocity to forces 

A relationship between the the input angular velocity (w) from the motor to an output 

force (u) on the car can be established through the motor torque. The angular momentum of 

the wheels (J) and the radius of the wheel (Rw) must be taken into account, and the physical 

model is described as the following: 

𝑢 ∗ 𝑅𝑤 = 𝐽 ∗ 𝜔̇  

And the following transfer function is established: 

𝐺𝑐𝑜𝑛𝑣 (𝑠) =
𝐽 ∗ 𝑠

𝑅𝑤

 

1.5 Inverted Pendulum and Car 

 

Figure 1 Inverted Pendulum Car (Ogata) 

The inverted pendulum car was modeled from an input force (u) to the output angle of 

the stick (θ). The length of the stick to its center of mass is labeled as l, and the mass is m, and 

the moment of inertia is I. The mass of the car itself is labeled as M. The vertical and horizontal 

forces for the car on the stick and vice versa are labeled as V and H, respectively. The 

gravitational constant (g) is 9.8 m/s2. 
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The motion of the car can be characterized as follows: 

𝑀𝑥̈ =  −𝐻 + 𝑢 

Note that the motion of the car in the vertical direction can be ignored, as the car is not 

expected to launch. The motion of the stick can be split up as the linear motion and its angular 

motion as follows: 

𝑚𝑥̈ = 𝑚
𝑑2

𝑑𝑡2
(𝑥 + 𝑙 sin 𝜃) = 𝐻 

𝑚
𝑑2

𝑑𝑡2
(𝑙 cos 𝜃) = 𝑉 − 𝑚𝑔  

𝐼𝜃̈ = 𝑉 ∗ 𝑙 sin 𝜃 − 𝐻 ∗ 𝑙 cos 𝜃 

Through linearization and the use of a few relationships of when θ is small, we arrive at 

the following: 

(𝑀 + 𝑚)𝑥̈ + 𝑚𝑙𝜃̈ = 𝑢 
(𝐼 + 𝑚𝑙2)𝜃̈ + 𝑚𝑙𝑥̈ = 𝑚𝑔𝑙𝜃 

 Using this mathematical model of the system the transfer function can be derived as 

shown: 

𝐺𝑝𝑒𝑛𝑑(𝑠) =
−𝑚𝑙

[(𝐼 + 𝑚𝑙2)(𝑀 + 𝑚) − 𝑚2 𝑙2]𝑠2 − (𝑀 + 𝑚)𝑚𝑔𝑙
 

1.6 Sensor 

The sensor outputs a voltage based on the angle of the stick and is considered relatively 

linear to the angle around the center point. The data collected from the lab is shown in the 

graph below. The sensor is then modeled as a gain and the offset can treated as a disturbance, 

which is compensated for by setting Vref equal to it. The transfer function is as shown: 

𝐺𝑠𝑒𝑛𝑠𝑜𝑟 (𝑠) = 𝐾𝑠 

1.7 Open Loop Plant Transfer Function 

𝐺(𝑠) = 𝐺𝑝𝑒𝑛𝑑 (𝑠) ∗ 𝐺𝑠𝑒𝑛𝑠𝑜𝑟 (𝑠) ∗ 𝐺𝑎𝑚𝑝(𝑠) ∗ 𝐺𝑚 (𝑠) ∗ 𝐺𝑐𝑜𝑛𝑣 (𝑠) ∗ 𝐺𝑅(𝑠) 
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Figure 2 PD10 Car Component Diagram 

2 Analytical Design 

The car we used for the project was PD-10. It is a newer car that has a more streamlined 

circuit design. 

2.1 Car Components and Values 

Our car had three switches: one for the mains, one for the motor, and one for the sensor 

(See figure 2). It also only had one set of batteries that provided all the power. 

 
 

We then tested each of the components to determine their values for the MATLAB 

model. We followed the procedures in lab 3 to determine motor to have values of Km to be 

13.0 rad/(V*sec) and T to be 62.5ms. We followed the lab 5 procedure to find the sensor has a 

gain value of 571.89V/rad. The power amp has a gain of 1.25. The gear ratio was 0.25.  

2.2 Circuit Design from MATLAB 

We used MATLAB to calculate the moments of inertia and the open loop transfer function 

of: 
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Figure 3 MATLAB Derived PID Parameters 

 

Figure 4 MATLAB Distrubance Plot 

 

Figure 5 MATLAB Disturbance Plot Analysis 

 

𝐺(𝑠) =  
0.003661 𝑠

1.229𝑒 − 05 𝑠^3 +  0.0001966 𝑠^2 −  0.0001855 𝑠 −  0.002967
 

We then used PID Tuner to calculate the analytical values to a disturbance (See figure 3). 

Our gains are pretty small which makes sense given that we cannot go over 12v. 

 

2.3 Expected Performance 

Based on the MATLAB data our car should have a disturbance rejection response like 

figure X. It should oscillate back and forth at first with a max overshoot of 24.2%. Then it will 

approach steady state and calm down within 3.2 seconds. 

 

3 Implementation 

3.1 Actual Components 

For our actual PID controller, we designed the distinct parts in parallel, so it was easier to 

tune and modify. This way we could better see the effect each section had on the system. In 



Shade & Ponce 6 
 

Figure 7 Photo of Circuit on Car Figure 6 Op-Amp Circuit Design Diagram 

 

addition, we had a summing junction that combined a zero-reference voltage with the negative 

feedback voltage. We also needed an inverter for the PID section due to how the op-amps 

function. The gains for the PID controller were as follows: Ki is .4340, the Kp is .4557, and the Kd 

is .0095. Figure 6 shows the schematics of our controller and Figure 7 shows our actual 

implementation. Going from left to right the op-amps are: summing junction, Kp gain, Kd gain, KI 

gain, inverter. 

  

3.2 Actual Results 

For our actual car, when given a hardy tap it had a settling time of 12.2 seconds. It never 

quite stopped still but that is more because of the delicacy of the system rather than our 

implementation. However, we did succeed in having the car move very smoothly and slowly 

with a predictable oscillation in steady state. We also lowered the gain to make sure there was 

no slipping of the wheels and that we were not putting more than 12v into the motor. 

4 Discussion 

4.1 Error 

The main error was in the transient response. The MATLAB treated it as a perfect system 

and ours could not perform as accurately. The difference was 9.0 seconds. In addition, we could 



Shade & Ponce 7 
 

never get the car to perfectly stop, but that would be caused by air flow and how extremely 

delicate the system is to outside disturbances. 

The other thing that came up in our testing was that the car performed better with a 

zero-reference voltage than with what the sensor testing predicted. This makes sense for the 

transient response because having the reference voltage lowers the maximum error in one 

direction but raises it in the other direction. This makes the car a little more unpredictable and 

difficult to model symmetrically. Furthermore, we hypothesis that having a slight offset with 

the error signal at steady state makes the car movement more predictable; whereas if we truly 

had a zero error the rod with fall in either direction randomly and cause the car to be more 

jittery. 

4.2 Improvements 

The main problem with our MATLAB design is that it did not limit the max overshoot the 

same way the box does for the real car. MATLAB would therefore allow the system to become 

more unstable than it does in real life. The saturation that the car undergoes means that gains 

can be a lot lower and still produce desirable results. For example, if given a hard enough tap 

the pendulum would hit the side wall of the sensor box.  

The other main problem we faced was the lack of ideal movement response. This was 

primarily caused by wheel slippage since we did not have a way to model the limits friction puts 

on the wheel acceleration. Additionally, we had some trouble with high frequency motor 

vibration that was not translating to real motion due to slack in the motor belt, in addition to 

longer transient response. 

 


